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Let N be the positive integers set. In this paper we prove that any mapping f: N—A, with ACN,
cannot be an injective one, i. e. (ACN)=>(—(A~N)). We use the theorem about of linear n-space basis,
that is there das not exists any injective mapping of basis B, qinto a basis B,,. In other words, we
proved Euclidean Axiom 8: “The Whole is more than its own Part”; there are some proofs this theo-
rem in our article.
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1. Introduce. We use known mathematical texts in this report and we follow the Paul
Cohen’s forecast about continuum-hypothesis (CH) [1, IV.13]: «A point of view which the
author feels may eventually come to be accepted is that CH is obviously false». Linear inde-
pendence (dependence) is the main concept of linear space E,,. “If there is a finite number of
vector in the basis, the space is said to be finite dimensional and its dimension is equal to the
number of vectors in its basis. Otherwise, it is infinite dimensional. For an infinite dimension
space a basis usually means a sequence of elements x;, x,, ... such that every x is uniquely ex-
pressible in the form x = )72, a;x; (meaning that the limit as n becomes infinite x —
Yisq a;x; is zero)”. [2, p. 27] The basis B,, of E,, contains n linearly independent vectors and
the set of any 1 + 1 vectors in E,are linearly dependent and there does not exist any injec-
tive mapping of basis B,,,;on E,,; into the basis B,on E,. Now we shall generalized those
statements on infinite-dimensional linear spaceEeasily. Let F(A,B) = {f|f:A - B} be a
set of all mappings [3, Sec. 8] from 4 in B (on B). A mapping ¢: A — B is said to be injective
one, or an injection, if either

a = gholds ¢(a) = ¢(q), or ¢(a)=p(q)=a=q. (D

Instead of “the f'is injective one” one speak [4, 11.3.7] also,
that “the f is one-to-one function” or “the f i1s 1-1-
correcpondence”. The mapping @:A — B of this kind that
@(A) = B is said to be “as mapping on” or “a surjective mapping”,
or, more shortly, “a surjection”. Injective mapping ¢:A4 — B is
named as bijective mapping or bijection [4, I1.7] [5, 1.6] if it is sur-
jective too, i. e., when it is true (1) and @(A) = B. In this case one
speaks, that the sets 4 and B either arebijective, or they have equal
power [5, 1.9] and he writes A~B. The bijection ¢: A — Ais named
also a rearrangement, or a permutation, or a transformation of the
set A. Let the symbols /(4,B), S(4,B) and B(4, B) designate the sets
of injections, surjections and bijections from A in B or, accordingly, into B. So at those nota-
tions we have the following equality

B(A,B) =1(A,B) N S(A, B). (2)

Equality (2) shows that we must confirm both two properties of a mapping @: A—>B: 1)
the injectivity of ¢ and 2) its surjectivity @(A) = B, before we can say that the mapping
¢: A—>B is any bijection. Unfortunately, this requirement is ignored at any operating with the
term (1-1)—correcpondence either implicitly, or by default. Bellow we need a criterion of a
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bijectivity of a mapping ¢: A—B being demonstrated in [6, Th.3.10], so everyone can prove
that easily.

Theorem 1.Criterion of a bijectivity. The mapping ¢: A = B is bijective one if and only
if for every splitting of the set A = U;4;into nonintersecting subsets 4;, i € IcN, tree follow-
ing conditions are fulfilled:

(1) Vi mapping@;: 4; — B is any injection, whereg; £ Q.

(2) V(i,j:i # j)B;nB; = @, whereB; = @(4,),

However, for examples, in 1950 H. Hasse wrote [7,1.1.1], that a mapping @:N —
{N U {O}} “with@(n) = n — 1 is a substitute”. This sentence contradicts with Theorem 1 by
means of uniqueness theorem for the set IV existence.

2.Galileo Galilei’s paradox. Now to be followed to Peano [8, 3.1] we formulate the
Axioms System for the set N with the equality relation (x = x, a # b):

(P1)0 eN.

(P2) VxeN, 3x’'eN, thex' is said to be “immediately follows to x”.

(P3) VxeNx'#0.

(P4) VyeN\{0}3!zeN: (2)' = y.

(P5) If any attribute Q(x) is defined VxeN, and if

(D) Q(0)=truth and

(IH)Vxe N Q(x)=truth holds Q(x')=truth, therefore,

(IIHVyeNQ (y)=truth.

Axiom (P5) affirms the principle of mathematical induction. Below we use this mathe-
matical induction technique every often. Galileo Galilei discovered on 1638 [9, c. 140-146;
10,IV.32] the paradox which is Va € N 3b = a?eN. G. Galilei has said about this as follow-
ing: “The notions both either equality or inequality can be used only for finite qualities and
not be applied for the infinite ones”.

However, on the boundary of XIX and XX centuries there was appeared far-reaching
with mistakes generalization of G.Galilee’s opinion about his paradox. S. Kleene write down
[10, IV.32] this point of view as following: ““ ... it is possible to establish 1—1-correcpondence
between squares of the positive integers numbers and itself integers, that conflicts with Eucli-
dian Axiom 8 [11], according to which whole more than any of its own parts... .”

Now we shall give a new interpretation of G.Galilee’s paradox. To be exact yet we
prove the mapping @: N — N, with@(n) = n?, is not realizable on the all set N. We shall
consider the square I, X I,,, wherel,, £ (0,1, 2, ...,n). Let now S(n) be the following state-
ment: “The @(n) = n?is not realizable on the all I, “. We prove Vn € N thestatement S(n)
by mathematical induction technique.

(I Let n=2, so I,=(0,1,2) and o¢(I,) =(0,1,4)—(eU;) €1, =(0,1,2)).
Then S(2) = truth.

(I1.1) Let n=k and S(k) = truth by induction.

(I1.2) Let n=k+1. Then @(I4,) = @I, )@k + 1). Since @(k +1) = (k + 1)? and
with (IL.1) @(I;4+1)—(E I;41). Therefore,

(Ill) VneN,n > 1,5(n) = truth.

So we proved Euclidean Axiom 8 at the first time.

3. Stephen C. Kleene had used [12, I, 1,2] the Cantor diagonal method for the proof an

uncountability of all natural sequences sets. Namely, he has chosen the countable subset of
[,k=wx

natural sequences (f; (k))from the set (f; (k))i,kzo of all ones. Haskell Curry has descri-

bedthesimilar example as Rishar’s paradox. Farther, S. Kleene wrote the sequences (f; (k))
in the infinite-dimensional square matrix
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fo(0) () (@) ..
Hay [ f7(0) ff(D) A2 (3)
f2'(0) fz*(“l') (2) ..

Further S. Kleene has defined one more sequence f (k) under the formula
f*(k) £ fiy (k) + 1. Matrix H of countable subsets of the set (}3* (k)) of all se-

quences. The sequence f*(k) was not inscribed into matrix (3) because this list-matrix H was
already formed as completely and so finely. And consequently Stephen C. Kleene has formu-
lated the following statement: “The set of all number natural sequences is not countable one.”
Really, S. Kleene has proved much greater. He proved that there not exist any bijection be-
tween the set H of sequences f;"(k) and set H* = H U {f*(k)} . We write below the details of
some proofs of this statement.

Let B,.1 = (by, by, ..., b,) and H, = (hy, hq, ..., h,,_1) bebases of two linear spaces
E,.,and E,, accordingly. We shall use the mathematical induction techniquefor proving the
following statement.

Theorem?2.
VneN3(i,j,m):i #j,i+1,j+1,m < n:V (@: Byyy = H)=¢(b) = ¢(bj) = hyp.
(I) Let n=1,then B4 = B, = (by, b,) and H, = H; = (hy).
Now we have following equflities: @ (by) = @(b;) = hy, so Th. 2=truth.
(IL.1) Let n=k and Th. 2 = truth, by a condition of induction.
(I1.2) Let n=k+1.
Then Bpyq = Byig = (bo, by, byy1), Hy = Hyyq =
(ho, by, -+, by). Now we have @(By12) = @(Biy1 U {brs1}) = @(Brs1)V@{by11)SHy41-
Thus 3m, m <k + 1: @(bg4+1) = hy, € Hyy4q. At the second
hand, by virtue @(Bi;1)CHy41, 3L 1 < k + 1:9(b)) = hyp,.
Then we have
@(b;) = h,, = @(by41)-That isTh. 2 = truth in this case too. Therefore,
(IIT) VneN,n > 1, Th. 2 = truth.
So we proved Euclidean Axiom 8 at the second time.

4. Cantor diagonal method and Euclidean Axiom 8. Now we return to matrix (3). Let in (3)
matrix H be identity matrix HE

10000..

01000..
HE = .

00..010..

The lines of matrix HE are canonic natural sequences f; = (8%‘: k=0, 00),i = (0, oo,here 8{-‘ —
is L. Kronecker symbol. Those sequences make up a basis B(F) of infinite-dimensional space
F that is the set of all natural sequences (f;(k)i=¢)i=o i, k € N[2, p. 349]. For example, if
f*2(0110..),then f* = f; + f,. Now we identifier every element f}, of basis B(F) with
the corresponding natural number & by means following bijectiong: N = B(F),

(k) = fi. (4)
Let F* 2 B(F) U {f*}. Now we shall prove the following main statement.
Teopema 3. There is not mapping y: F*—B(F) that is an injective one.

(1) Am: Y(f*) = by,. (2) Yet the mapping y: B(F) = B(F)\{b,,} is not injective by virtue of
both Theorem 1 and Theorem 2.
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Theorem 3 is equivalent by virtue of the bijection (4) with Euclidian Axiom 8 in connection
with the set NV of all natural numbers in following form:

NcN U {a,ag N}=>—-(N U {a}~N).

The second example is more instructive: The bijective mapping exists by virtue of the
bijection (4) between the set of all even natural numbers and the set, for example, those and
only those vectors of the basis B(F), which have even indexes. The legend about an existence
of any bijective correspondence between of natural numbers set and the set of even numbers
was constructed on any historical misunderstanding. Thus we proved Euclidean Axiom 8 once
again.

1. The anti-cyclic permutation. In this item we use essentially the Axiom of Choice
[1, IV.9], [13,0.23-0.26] and a notion of exact-permutation in our proofs. If f € F(A, A)and
H c A, then not always f(H) # H. A set B, (A4, A)of all exact rearrangements of a set A
(exact-permutation or anti-cyclic permutation, a rearrangements without cycles [6, Chap. 3])
we define by the following equality

Bo,(A,A) 2 {f:f € B(A4, A)}&f(H)=H = H = A. (5)

For example, the bijection f € B, (I, I), I=[0, 1], can be defined with following for-
mula:

L x+hif0<x<1-h,
f(x)={1—x, ifl-h<x<1,

whereh<0,5 and 4 is a transcendental number.

The graph of this function in the obvious image testifies, that the given function f satis-
fies to a condition (5). It is easy to write down exact rearrangements on set of natural numbers
but what would not be the first element in image at a mapping f € B,, (N, N),the last element
there cannot be, that is obvious, by virtue of the potential nature of set V.

Now we shall choose a pair {a, y},a € A and y € B,, (4, A)by means of the Axiom of
a choice [13, 0.23-0.24] from sets A and B,, (N, N) . Further we define with the help of the
pair {a, y} following sequence of investments of subsets of set 4, named ([3, Sec. 14], [13,
0.9; 0.23]) as a chain (a chain on an investment):

{a} c {a,b} c{a,b,c}} c{a,b,c,..,p} cc{ab,c,..,p,q} C - CA, (6)
where b = Y(a), c = Y(b),d = yY(c), ...,q =Y(p), ... .

We shall name a chain (6) by a-chain on its first element [6, I'n. 3]. Let's emphasize,
that in (6)VYcAy~1(a)eY, in general case. If O and P, PcOcA, are the neighboring ele-
ments of a-chain (6), then O=P U {q} £ P*, where y(p) = q and q is, accordingly, the great-
est element in Q in the sense that,Q\P = {q}. The last property defines discrete character of a
chain (6). Therefore, it is obvious, that the set of elements of a-chain (6) is quite ordered set,
1. e., its each non trivial subset has the least element. We shall name a-chain (6) a full one,
meaning two its properties noted above. If £€B,, (4, A), then, at the first, £(a)=g#a, and, se-
condly, the mapping & will transform the initial full a-chain (6) into some full g-chain which
we shall designate as symbolP(g, &, 4). Thus, equalityQ = P*is equivalent to equalityQ =
tyQ = PU{q}, hence, we have following equalities:

E(PH=E( PULg)=E(P)U £((a)=E(O).
Order v on set 4 is defined by pair {a,y} as follows. If h 2 y~!(a), then Vq € A\h we

accept g < hand g¥y(p). Besides if for elements Q and R of a-chain (6)3H such, that

OcHCR, i. e. R=0", thenfor VgeQ and Vse R\Q" we assumeg<s. So that a %Xb, b<c,
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cXd, ..., where, as in (6), b= P(a),,c = P(b),d = P(c), ..., g = P(p), ... . By virtue of
(6) order v is both full and discrete. Set A with the order v we shall designate as (4, v).

Remark 1. If the element ™1 (a) exists, then we can define a decreasing chain on an
investment

A > A\{a} o A\{a,b} D> {a,b,c} D -
> A\{a,b,c, .., p} D A\{a,b,c, ...,p,q} D - D YP~1(a) @)

by means of a full chain (6) by obvious image. We name a chain (7) as dual-chain for a-
chain (6).

Theorem 4.V(y,Y): yeYcAthere exists ¢, pe B (A4, A), such that y-chain P(y, ¢, A)3Y.

Proof Let Z 2 A\Y,0eB,,(Y,Y)andteB,,(Z,Z). Thus we have y-chain P(y, o,
Y).LettU{z} 2 Y*,teB,,(Z,Z).Now we construct the ¢cB(4,A) as following: Doy £
oand 2)¢IZ 2T,

Using both Theorem 1 and Theorem 4 we can construct new proof of Euclid Axiom 8.
Let (4, v) be a set A with order v from it.4. Further let P(A)be a set of all subsets of set A.
Now we consider the class R( P(A))containing all elements of the set P(A), the set of all a-
chains and the set of all dual-chains. Now everyone can easily prove the following statement.

Theorem 5. Any chain V, being either an own part of either some full g-chain or of the
dual-chain is a well ordered one, i.e. this chain}” has the least element.

6. The quite ordered sets and injective mappings. Now we prove Euclid Axiom

8 in the form of the following theorem.
Teopema 6. Let Bc4and oeF (4, B), then such pair (a, g) of elements a and ¢ exists into the
set A, that

¢(a) = p(g)witha # q. )

ProofLet @(A) = B. It will not break a generality of our reasoning. Now we shall assume op-
posite (8), i. e.,oelI(4, B) # @ at BcA and let further H 2 A\B, then HNB = J. Now we
have a circuit of equalitiesin those designations:

B = ¢(4) = (BUH) = ¢(B) U p(H).

Therefore, @(B) € B and@(H) S B.An inclusiong(H) € B means, that Vh € H and
b € B exists such that@(h) = b.On the other hand, if @(B) = B, then an element geBexists
for every beBby virtue of oeI(A4, B) such, that @(g) = b = @(h) at g=h, since BNH = Q.
This proves the condition (8). In case @(B) = BjcB andH; £ B\B;, then @(B) =
¢(By U H,) = ¢(B;) U @(H;).Therefore,q(B;) S B, and @(H;) S B;.As well as above we
prove, that either@(B;) = B; and the condition (8) is proved, or@(B;) = B,cBy,H, £
B;\Byand so on. Thus, we shall receive following a decreasing sequence Z of investments:
A>BoB;oB,;>...0B;>.... Here ieJ and J is some set of indexes corresponding constructed
chain Z. This chain Z contains by virtue either of Theorems 4 and 5 or Kuratowski’s lemma
[13, 0.25.(d)] in some maximal chain. Therefore, the chain Z has any least element in this
case. It means that there3d k € J:@(By_;) = By and @(By) = BycBi_,. If as above,
Hp 2 By,_{\Bx # 0, then @(Byx_1) = @©(ByxVHy) = @(By)v@(H,) = B,. Therefore,
©(By) = B, and @(Hy) € By at BynH; = Qby virtue of the subsetH,choice.It means that
the conclusion (8) of Theorem 6 is proved. Consequently, we prove Euclidean Axiom 8 at the
fourth time in this paper.
Theorem 6 has following the canonical brief form: BcA—=—A4~B.
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In particular, ggA<— (A~ (AU{q})), and we speak about this so: concerning equiva-
lence the family of infinite sets (as well as finite sets) divides on classes “to within an ele-
ment”. This result, obviously in turn, opens a new way of research a continuum-hypothesis
[1]. We have written down below without the proofs only two of statements which of them is
equivalent to Theorem 6 and they both as well as Theorems 1-6 are obvious to the finite sets.

Statement 1. If Bc4and ¢l (4, B), then 3 (4, B):§jp = @.

Statement 2.A~B<>(B,, (B, B)~B,, (A, A)=(B(A,A)~B(B, A)).
The second part of the Statement 2, namely the equivalence

By (B: B)~Bex (A; A)<:> (B (A, A)NB (B' A)):

characterizes the property for the equivalent sets to be indiscernible in the functional al-
titude.

Reference

1. CohenPaul J. Set theory and continuum hypothesis. — Princeton — New Jersey — Toronto —
London — New York: D. Van Nostrand Company, 1966.

2. Mathematics dictionary. Edit. By Glenn James and Robert C. James.— D. van Nostrand com-
pany, 1958.

3. Halmos Paul R. Naive set theory. — Princeton— New York: D. Van Nostrand Company, 1960.

4. bypbaxu H. Teopust MHOXecTB / iep. ¢ ¢pani. — Mocksa: Mup, 1965.

5. DieudonneJ. Foundations of modern analysis. Academic Press New York and London, 1960.

6. Cyxomun A. M. AnpTepHaTHBHOE HA4ajo BHICIIEH MaTeMaTHKHU. AJBTEPHATUBHBIN aHAIU3:
000CHOBaHME, METOJIOJIOTHS, TEOPHsI U HEKOTOpble npmitokeHus. — Saarbrucken: LAPLambertAcade-
micPublishingGmbH&Co. KG, 2011. - 176 c.

7. Hasse H. Vorlesungen liber Zahlentheorie. — Berlin, 1950.

8. Mendelson El. Introduction to mathematical logic. -New York: D. Van Nostrand Company,
1957.

9. I'anuneu I'. N36panusie Tpynbl: B 2 T. — Mocksa: Hayka, 1964. T. 2.

10. Kleene S.C. Mathematical logic. —John Wiley&Sons,1967.

11. Euclid’s “Elements”: transl. from Greek .— M. ; —.L.: OGIZ, 1948. Books I-VI (In Russian).

12. Kleene S.C. Introduction to metamathematics.— New York: D. van Nostrand company,1952.

13. KellyJ. General topology.— Princeton, New York: D. Van Nostrand Company, 1957.

YK 621.331.221:681.526 (571.51)

HNCITOJIB3OBAHUE OHTOJIOI'MYECKOI'O NOAXOJA B CUCTEME
YIIPABJIEHUS NHTEJIVIEKTY AJIBHBIM
KAIIUTAJIOM OPTAHU3ALIUN

Baoum I'epmanosuu Tapacoes,acnupanm
Ten.: +7 923 2030840, e-mail: tarasovvg@mail.ru
Cubupckuti 20cy0apcmeenHblll MexHOA02UYeCKUll YHUGepcumem
http://www.sibstu.kts.ru

Onucvieaemcsi paseumue qu)OpMaquHHOﬁ cucmemvl OJisl asmomamuzayuu 06Cﬂy9fcu6al-lu}l u
pemMonma uUsmepumenlbHblx npu6op06 u Haepeearou;eﬁc;z asmomamuKku U Usmeperusl meniol31eKmpo-
cmaHyuu HOpqubCK(l. Ocobennocmb 6 UCNONL308AHUU OHMOLOSUHECKO20 NO0X00Ad K nocmpoeHuIo
cucmembol MHme]l]leKmya]leOlj noc)depo;cxu. Coanacho pe3yiomamam IKCnepumMeHmdailbHo2o UcCnojlb30-
6AHUA cucmembl, yanZOCb oyeHumbv peHma6€JZbHOCWZb U 803MOJICHbIE 0OacmU 015 Od/IbHelUle20 pas-
euUmuAlL.

Kurouesvie crnosa: Obcayscusanue u Bocemanosienue Obopyoosanus, Cucmema niaHupo8anus
pecypcog npeonpuamus, Cucmema Ynpasnenus sSHaHUAMU.
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